
Mid-Term Workshop: 

Modelling Techniques (M24)

M. Monfaredi, S. Palleja, C. Sanghavi, A. Zarri

M24 SmartAnswer Mid-Term Workshop, Leuven, 20th February 2019
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Applications

Aerospace Automotive

M24 SmartAnswer, Mid-Term Workshop, Leuven, 20th February 2019
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Aerodynamic Fan Noise

M24 SmartAnswer, Mid-Term Workshop, Leuven, 20th February 2019

• Rotor-Stator Interaction

• Upstream Turbulence

• Rotor-self noise

• Non-uniform azimuthal velocity distribution

• Tip/Ring gap vortices

Noise sources in common:
Turbofan specific noise sources:

• Thickness noise (monopolar)

• Buzz-saw noise

Generalizability of the chosen 
modelling methods

Moreau, S.; Turbomachinery Noise Predictions: Present and Future; Acoustics. 1. 92–116. 
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Acoustic Modelling and Mitigation

Source Modelling and Propagation

Mitigation Techniques

Near-field Fluid Dynamics

Expensive CFD – LES, RPM, 
LBM 

Cheap CFD/Experiments + 
Source Characterization

Shape Optimization  

Acoustic Liners

Analytical Models

Numerical Techniques-
DG-FEM,BEM

Acoustical Analogies

M24 SmartAnswer, Mid-Term Workshop, Leuven, 20th February 2019
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PhD Projects

Aerospace Automotive

Low-Speed Cooling 
Fan Noise Modelling

ESR: Alessandro Zarri

Fan Proximity Liner 
Modelling

ESR: Sergi Palleja-Cabre

FEM Modelling of 
non-locally reacting 

liners

ESR: Chai

CFD-CAA analysis & 
optimization methods

ESR: Morteza Monfaredi

M24 SmartAnswer, Mid-Term Workshop, Leuven, 20th February 2019
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Low-Speed Cooling Fan 
Noise Modelling

A. Zarri, C. Schram, J. Christophe
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About ESR2 PhD Research

M24 SmartAnswer, Mid-Term Workshop, Leuven, 20th February 2019

Dealing with: noise emitted by automotive 
low-speed cooling fans

In order to: develop a low-order 
prediction noise methodology

Numerical work: to simulate the 
far-field noise of the system

Experimental work: to 
isolate and localize
the acoustic sources
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Numerical Methodology

M24 SmartAnswer, Mid-Term Workshop, Leuven, 20th February 2019

Far field acoustic simulation

CFD:
• RANS 
• URANS
• DES
• LES
• …

BATMAN

Hybrid methods

VKI in-house developed code 
based on Amiet’s theory
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URANS CFD Results obtained at Valeo 

Complete module simulation with the 
Heat Exchanger on the front.

URANS gives the averaged quantities,
as the pressure field below

Although they are considered a low-
order method, the simulation is rather 
complicated
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Velocity Profiles and Pressure 
Coefficients

Extracted Data from the CFD simulation at 3 different positions along the blade

Velocity boundary-layer profiles at 3 
spanwise regions

Pressure Coefficient Distributions at 3 
spanwise regions
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Amiet’s trailing-edge noise 
model on rotating blades

Far-field sound pressure for a ventilator

Where the PSD of a blade strip reads:

Wall-pressure spectrum

Spanwise correlation length

Assuming a translational local 
displacement of each strip

Φ𝑝𝑝
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Wall-pressure models

Empirical Models
For zero pressure gradient flows

• WPS is given as a function of 

frequency

• Information only from velocity 

profile

𝜑𝑝𝑝
𝜑∗ =

𝐴(𝜔∗)𝐵

[𝐼 (𝜔∗)𝐶+𝐷]𝐸 + [𝐹(𝑅𝑇)
𝐺𝜔∗]𝐻

I. Goody Base

model

II. Rozenberg

III. Lee

IV. Kamruzzaman

Airfoil data

M24 SmartAnswer, Mid-Term Workshop, Leuven, 20th February 2019

For adverse pressure gradient flows
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Amiet’s Planes and Wall-Pressure Spectra 

M24 SmartAnswer, Mid-Term Workshop, Leuven, 20th February 2019

WPS applying Rozenberg’s Model

Fan blade planes division
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Trailing-Edge Noise Results

PSD far-field noise results Fan directivity results 



15M24 SmartAnswer, Mid-Term Workshop, Leuven, 20th February 2019

Future Numerical Work

• Better definition of the flow 
past the heat exchanger. 

• Improvements on BATMAN to take into account sweep angles, leading-edge 
noise, more accurate wall-pressure models.

• Simpler CFD simulation 
with rotor-alone non-axial-
symmetric configuration.
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PhD Projects

Aerospace Automotive

Low-Speed Cooling 
Fan Noise Modelling

ESR: Alessandro Zarri

Fan Proximity Liner 
Modelling

ESR: Sergi Palleja-Cabre

FEM Modelling of 
non-locally reacting 

liners

ESR: Chai

CFD-CAA analysis & 
optimization methods

ESR: Morteza Monfaredi

M24 SmartAnswer, Mid-Term Workshop, Leuven, 20th February 2019



Fan Proximity Acoustic Treatments for Improved 
Noise Suppression in Turbofan Engines 

Sergi Pallejà Cabré – ESR9

spc1n17@soton.ac.uk 

Supervisors: Brian Tester, Jeremy Astley

Secondment supervisors: Michel Roger (ECL), Hadrien Bériot (SIEMENS 
PLM), Néstor González Díez (TNO) 

M24 SmartAnswer Mid-Term Workshop, Leuven, 20th February 2019
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Context

e.g. Rolls-Royce 
Ultrafan, BPR 15+

https://www.rolls-royce.com/innovation/advance-
and-ultrafan.aspx (20/09/17)

Dominant Noise

Approach Departure

• Fan Noise
• Airframe Noise

• Fan Noise
• Jet Mixing Noise

• Mitigation of Fan Noise remains critical in 
noise reduction for the next generation of 
engines (2020).

• BPR for large engines:

• Optimise liner effect by exploiting available 
space

~10: 1 → 15: 1 +
Reduced liner 

performance due 
to lower L/D

M24 SmartAnswer, Mid-Term Workshop, Leuven, 20th February 2019

https://www.rolls-royce.com/innovation/advance-and-ultrafan.aspx
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Background

• Over-The-Rotor (OTR) Acoustic Treatments 
• Physical Mechanism

• Source modification
• Absorption of acoustic waves
• Reduced rotor-stator noise

• Experimental Data
• Noise Attenuation

• AAPL at NASA GRC
• Test data: ANCF, ADP, FJ44-3A 
• 1 – 5 dB OAPWL

• Aerodynamic Performance
• Penalty variability with design
• 0.75 – 9.8 % loss in adiabatic efficiency

• Design & Modelling
• Prediction method for OTR liner design

Williams International FJ44-3A 
engine(Sutliff, D. L. et al., 2013)

Close-up of foam metal liner installed 
in FJ44-3A (Sutliff, D. L. et al., 2013)

Advanced Noise Control Fan 
(Gazella, M.R. et al., 2013)

M24 SmartAnswer, Mid-Term Workshop, Leuven, 20th February 2019
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Objectives

• Improve the understanding of the acoustic attenuation of OTR liners through the development of
theoretical models, numerical simulations and experimental validation.

• Use the acquired understanding to provide a prediction method to guide the choice of low-TRL fan
proximity liner designs for optimal noise reduction.

M24 SmartAnswer, Mid-Term Workshop, Leuven, 20th February 2019



21

Methodology

Infinite lined duct with mean flow (Green/INF)

• Based on Green’s function for a lined circular duct 
containing uniform mean flow (Rienstra, S.W. and 
Tester, B.J., 2008).

• Hollow & Annular section.

• Hard & Lined walls.

• Source: static point monopole/dipole

• Cross-verified against Rienstra, S.W. and Tester, 
B.J., 2008 results & FEM simulations.

Semi-Infinite lined-hard duct (Green/SINF)

• Source: static  monopole/dipole.

• Gain understanding on the effects of different 
parameters on the noise radiation by using the inlet 
power Insertion Loss (IL):

• Source radial & axial position: 𝑟0/𝑎 ; 𝑥𝑠/𝑎

• Excitation frequency: 𝐻𝑒

• Preliminary inlet power Insertion Loss (IL) 
impedance map.

• Effect of the Mach number

ANALYTICAL APPROACH

M24 SmartAnswer, Mid-Term Workshop, Leuven, 20th February 2019
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Methodology

Green/INF & Green/SINF with multiple sources

• Based on Green/INF + Multiple sources 
(Coherent/Incoherent)

• It considers different distributions of point sources 
in the domain:

Source modelling

• Static point monopole

• Static point  axial dipole

• Static point lift dipole

• (Rotating point lift dipole)

ANALYTICAL APPROACH

• Distribution along the 
circumferential 
direction – B blades

• Distribution of points 
sources along the fan 
blade chord

• Distribution of points 
sources along the fan 
blade span

Impedance modelling

• Circumferential grooves 
with acoustic treatment

• Non-locally reacting in the 
azimuthal direction.

OTR acoustic casing treatment 
(Bozak, R. F. et al., 2018)

M24 SmartAnswer, Mid-Term Workshop, Leuven, 20th February 2019
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Methodology

Verification of the semi-locally reacting lined groove model

• FEM Software: LMS Virtual.Lab (Secondment at SIEMENS PML)

• Objetives: 

1. Improve the understanding of the acoustic response of 
acoustically treated semi-locally reacting grooves 

2. Provide a reference solution to cross-verify with the 
analytical impedance model

• Cases: 

NUMERICAL APPROACH

Single groove with incident 
duct modes

Multiple grooves excited 
by a monopole source

M24 SmartAnswer, Mid-Term Workshop, Leuven, 20th February 2019
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Preliminary Results

OTR Performance Estimates – Green/SINF

4 dB of power IL at 
optimum impedance

𝐻𝑒 = 31.35
𝑥𝑆/𝑎 = 0.04
𝑟0/𝑎 = 0.95

M24 SmartAnswer, Mid-Term Workshop, Leuven, 20th February 2019
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Preliminary Results

OTR Performance Estimates – Green/SINF

𝑍 𝜔 = 𝑅𝑓 + 𝑗 𝑘
𝑡 + 𝑑

𝜎
− cot(𝑘ℎ)

𝑥𝑆/𝑎 = 0.04
𝑟0/𝑎 = 0.95(SDOF cavity liner)

M24 SmartAnswer, Mid-Term Workshop, Leuven, 20th February 2019
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Preliminary Results

OTR NASA Estimates – PWL Insertion Loss

𝐶𝑂𝑅 = 5
𝑟0/𝑎 = 0.95
𝑀 = 0.0

Bozak, R. F. et al., 2018

𝛾 = 30 𝑑𝑒𝑔

M24 SmartAnswer, Mid-Term Workshop, Leuven, 20th February 2019



• OTR Performance Estimates – Green/SINF

• A point monopole source in design case provide a broadband power IL of ~4 dB, with 
significant attenuation over a wide range of source excitation frequencies.

• Verification of the semi-locally reacting lined groove model

• Preliminary comparisons of the numerical simulations of the acoustically treated grooves and 
the results obtained with the analytical impedance model show a satisfactory agreement.

• OTR NASA Estimates

• The predicted acoustic power attenuation or insertion loss is found to be within the same 
range as the experimental results, i.e. 2.5 - 3.5 dB (PWL).

27

Conclusions

M24 SmartAnswer, Mid-Term Workshop, Leuven, 20th February 2019
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Future work

• Green/SINF Development – inclusion of:

• System of rotating point sources.

• Swirl in the fan section – solid body rotation

• Green/FINF Development

• Finite length duct within a hard wall duct, the source/s placed within the 
lined region.

• Numerical Verification

• Further investigation on ‘back-reaction’ effects using LMS Virtual.Lab.

• Obtain reference solutions to cross-verify with the analytical models.

• Experimental Validation

• Validation of the analytical results with NASA published results.

• Validation tests at ECL : assessment of the performance of an acoustic 
liner in terms of reducing tip noise of an aerofoil over a flat surface.

Ω

Bozak, R. F. et al., 2018

M24 SmartAnswer, Mid-Term Workshop, Leuven, 20th February 2019
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PhD Projects

Aerospace Automotive

Low-Speed Cooling 
Fan Noise Modelling

ESR: Alessandro Zarri

Fan Proximity Liner 
Modelling

ESR: Sergi Palleja-Cabre

FEM Modelling of 
non-locally reacting 

liners

ESR: Chai

CFD-CAA analysis & 
optimization methods

ESR: Morteza Monfaredi

M24 SmartAnswer, Mid-Term Workshop, Leuven, 20th February 2019



Domain Decomposition Methods 
for modeling of acoustic liners

Chaitanya Sanghavi, ESR-14

Hadrien Bériot, Gwénaël Gabard, Olivier Dazel

M24  Smart Answer Meeting, Leuven, 20th February 2019
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Context

- Focus on the noise mitigation at the turbofan inlet. 

- Modeling of non-locally reacting liners is computationally expensive. 

- Modeling in the nacelle can be approximated using LPE or Helmholtz eqn.

- At 2BPF, and kR=128, the computational time is 5h30min,

for sideline configuration. 

M24 SmartAnswer, Mid-Term Workshop, Leuven, 20th February 2019
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FEM

Introduction to Finite element method (FEM) 

What is FEM ??

• The computational domain is divided into small geometric elements like

triangles, rectangles, cubes, etc. 

• In each element the pressure field is computed by using some 

basis functions. 

The example of a plane wave propagating in 1D in the  positive 

X – direction is shown. 

Helmholtz number = 5

M24 SmartAnswer, Mid-Term Workshop, Leuven, 20th February 2019
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FEM

16 elements 

M24 SmartAnswer, Mid-Term Workshop, Leuven, 20th February 2019
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FEM

32 elements 

M24 SmartAnswer, Mid-Term Workshop, Leuven, 20th February 2019



35

FEM

64 elements 

M24 SmartAnswer, Mid-Term Workshop, Leuven, 20th February 2019
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FEM

128 elements 

• We need to increase the number of points to improve the results

• This is classical FEM.

M24 SmartAnswer, Mid-Term Workshop, Leuven, 20th February 2019
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Higher order FEM

We keep the same number of elements, but increase "𝑝"

𝑝 = 1, 32 elements

M24 SmartAnswer, Mid-Term Workshop, Leuven, 20th February 2019
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Higher order FEM

𝑝 = 2, 32 elements

M24 SmartAnswer, Mid-Term Workshop, Leuven, 20th February 2019
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Higher order FEM

𝑝 = 3, 32 elements

M24 SmartAnswer, Mid-Term Workshop, Leuven, 20th February 2019
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Higher order FEM

• Just with 32 elements with can get very good accuracy.

• Referred to as 𝒑𝐅𝐄𝐌.  

𝑝 = 4, 32 elements

M24 SmartAnswer, Mid-Term Workshop, Leuven, 20th February 2019
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Higher order FEM

Higher order FEM method

• Allows to use one mesh for a range of frequencies

• Static condensation

- Removes bubble shape functions 

- Improves the conditioning

• Increases assembly time for the system

Options to choose in higher order FEM:

• Nodal based (Lagrange)

• Hierarchic  (Integrated Legendre) 

- Ensures optimal conditioning of the stiffness matrix

- basis of order p + 1 built on simple correction

of the basis of order p;

Vertex function Edge function

Face function Bubble function

M24 SmartAnswer, Mid-Term Workshop, Leuven, 20th February 2019
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Background

Higher order FEM method

• Adaptive Higher order FEM (FEMAO)      [1]

• Anisotropic Higher order FEM (FEMA2O)  [2]

• These provides drastic improvements over the fixed higher order FEM. 

• But even with FEMA2O, it requires large computational time for one

simulation. 

• These simulations need to be run 100’s to 1000’s of times for liner

optimization. 

• We propose to use domain decomposition methods (DDM) 

to tackle this problem

[1] Beriot, H. et. al. “Efficient implementation of high-order finite elements for Helmholtz problems,“ International Journal for Numerical Methods in 
Engineering, Vol. 106, No. 3, 2016, pp. 213-240.
[2] Gabard.,G., et. al., “An Adaptive, High-Order Finite-Element Method for Convected Acoustics.” American Institute of Aeronautics and Astronautics,  
2018.  

M24 SmartAnswer, Mid-Term Workshop, Leuven, 20th February 2019
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Background

Domain Decomposition Methods

We propose to use non-overlapping FETI methods. 

What is FETI ??

Finite Element Tearing and Interconnect

• Division of the numerical domain into 

smaller sub-domains (Tearing)

• Compute partial solutions in each

subdomain (Finite Element)

• Glue the solutions back to get the 

final solution (Interconnect)

Suited for parallel computing. 

M24 SmartAnswer, Mid-Term Workshop, Leuven, 20th February 2019
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Objectives

• Examine / Compare the state of art FETI methods using 𝑝 FEM. 

• Extend FETI methods to non-local liners

• Improve the optimization workflow for liner modeling

- reduce CPU, memory costs

- reduce the computational time 

• Extend FETI methods to non-local liners with flow. (LPE)

• Apply the methodology on realistic nacelle intakes. 

M24 SmartAnswer, Mid-Term Workshop, Leuven, 20th February 2019
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Methodology

 FETI-2LM (two LM for coupling.)

 FETI-H (1 LM for coupling)

• Porous material is modeled as a fluid 

with freq. dependent properties.

• Fluid 1 and 2 are governed by 

Helmholtz equation.

FETI-2LM Interface conditions: 

𝑝1 = 𝑝2 , 𝑣𝑛1 = −
𝑣𝑛2

𝜕𝑝1
𝜕𝑛1

+ 𝑖𝑘1𝑝1 = −
𝜌1
𝜌2

𝜕𝑝2
𝜕𝑛2

+ 𝑖𝑘1𝑝2 𝑜𝑛 Γ. . . (1)

𝜕𝑝2
𝜕𝑛2

+ 𝑖𝑘2𝑝2 = −
𝜌2
𝜌1

𝜕𝑝1
𝜕𝑛1

+ 𝑖𝑘2𝑝1 𝑜𝑛 Γ… (2)

Fluid 1, k1,𝜌1 ,c1

Porous 2

k2, 𝜌2 ,c2

Hard wall

Hard wall

Ω1

Γ

Ω2

n1

k2(𝜔), 𝜌2(𝜔), 𝑐2(𝜔) are complex and

frequency dependent. 

M24 SmartAnswer, Mid-Term Workshop, Leuven, 20th February 2019
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Methodology

Ω1

Γ

Ω2

𝜕𝑝1
𝜕𝑛1

+ 𝑖𝑘1𝑝1 = 𝝆𝟏 𝝀𝟏𝟐 on Γ… (3)

𝜕𝑝2
𝜕𝑛2

+ 𝑖𝑘2𝑝2 = 𝝆𝟐 𝝀𝟐𝟏 on Γ… (4)

Resulting interface FETI-2LM problem:

𝜆12+ 𝜆21 = 𝑖
𝑘1
𝜌1

+
𝑘2
𝜌2

p1 on Γ… (5)

𝜆12+ 𝜆21 = 𝑖
𝑘1
𝜌1

+
𝑘2
𝜌2

p2 on Γ… (6)

Discretization : Higher order FEM

ORTHODIR to solve the iterative system. 

Γ

M24 SmartAnswer, Mid-Term Workshop, Leuven, 20th February 2019
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Methodology

Case 2: Kundt’s tube test case

ℎ-𝑝 convergence in 1D using p-FEM

5 partitions each in fluid 1 and 2

Pressure field at 7.7kHz for a plane wave

Case 1: Plane wave propagation

• L2 − norm error converges as 𝐷𝜆
−(𝑝+1)

.  

• Scalability tests (w.r.t. iteration count) showed

better performance for FETI-2LM compared

to FETI-H. No preconditioner used.

M24 SmartAnswer, Mid-Term Workshop, Leuven, 20th February 2019
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Verification

Case 3:Duct-Liner Test case

Simplified

Geometry

in 2D

16 partitions in duct, 1 liner medium

Mode order =2,5 at f = 8kHz using FETI-2LM, 8 partitions in duct and 1 partition in liner

M24 SmartAnswer, Mid-Term Workshop, Leuven, 20th February 2019
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Workflow

Select design parameters, porosity, liner depth, etc.

Save the LU factors (if first iteration) otherwise reuse them 
from the previous FEM calculation

Solve the interface matrix  iteratively for a given tolerance (Reuse the 
previous Krylov subspace basis)

Compute the transmission loss for the 
design parameters chosen  

Proposed workflow at a particular frequency

Has to be run 100’s 
of times in the 

optimization loop.

M24 SmartAnswer, Mid-Term Workshop, Leuven, 20th February 2019
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Workflow

Liner 1: 𝑑 = 5 cm,𝜙 = 2𝑒3
𝑁𝑠

𝑚4

Liner 2: 𝑑 = 10 cm,𝜙 = 5𝑒4
𝑁𝑠

𝑚4

Case 1: Classical way

Case 2: Proposed methodology

M24 SmartAnswer, Mid-Term Workshop, Leuven, 20th February 2019

• This new optimized workflow has been

verified for this simple geometry.

• The results from case 1 and case 2 are accurate

up to machine precision. 

• Drastic reductions in the CPU cost observed.

• Recycling the vectors reduced the iterations 

cost by a factor of 2. 

• The range of parameters chosen for the liner :

𝑑 = 5 − 10 𝑐𝑚

𝜙 = 2𝑒3 𝑡𝑜 5𝑒4
𝑁𝑠

𝑚4
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Preliminary results

1kHz, first mode optimization

𝑑𝜙

Results from manual scan of the design space Results from “fmincon” for optimization

• T.L.  = 11.77 dB for 10cm, 6572 
𝑁𝑠

𝑚4

• Matlab optimization toolbox “fmincon” is used. 

• Since there is only one minima, the fmincon converges

irrespective of initial guess.

• The higher the liner depth, better is the attenuation in general.

M24 SmartAnswer, Mid-Term Workshop, Leuven, 20th February 2019
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Conclusion

• The FETI-2LM DDM was found to be more efficient in the absence of 

a global preconditioner. 

• The optimization workflow has been implemented and verified in 2D

in the case of no flow.

• Automatic local optimization tools have been tested for simplified 

geometries in 2D.  

• The savings in the LU factor provide drastic reductions in CPU costs.

• The current recycling strategies reduce the number of iterations 

by 50%. 

M24 SmartAnswer, Mid-Term Workshop, Leuven, 20th February 2019
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Future work

• More efficient recycling strategies to improve the performance of the

proposed workflow.

• Extend the current workflow including mean flow effects in 3D. 

• Application to a realistic test case using optimization tools in 3D.

• Generic and a black box tool, easy to use which can be integrated in 

any optimization workflow. 

M24 SmartAnswer, Mid-Term Workshop, Leuven, 20th February 2019
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PhD Projects

Aerospace Automotive

Low-Speed Cooling 
Fan Noise Modelling

ESR: Alessandro Zarri

Fan Proximity Liner 
Modelling

ESR: Sergi Palleja-Cabre

FEM Modelling of 
non-locally reacting 

liners

ESR: Chai

CFD-CAA analysis & 
optimization methods

ESR: Morteza Monfaredi

M24 SmartAnswer, Mid-Term Workshop, Leuven, 20th February 2019



ESR 13: Morteza Monfaredi       Supervisor: K. Giannakoglou                             

CFD-CAA analysis & optimization methods, with industrial 
applications
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Outline

• Hybrid Methods

• Validation of Hybrid solver

• Adjoint Methods

• Continuous Adjoint formulation

• Background

• Optimization results

• Next Steps

M24 SmartAnswer, Mid-Term Workshop, Leuven, 20th February 2019
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The overall acoustic problem is broken down into a set of coupled sub-problems, addressed using a 

numerical method that is customized to the dominant physics occurring at this stage.

•Development of a CAA tool based on Ffowcs Williams & Hawkings (FW-H) analogy and coupling with a 

GPU-enabled compressible CFD solver .

•Development of the (continuous) adjoint to the coupled CFD-CAA model.

Hybrid Methods

FW-H analogy 
(permeable version)

M24 SmartAnswer, Mid-Term Workshop, Leuven, 20th February 2019



Flow

Observer
@ R = 500

Monopole 
Sound Source

58

Validation of Hybrid solver

Monopole in flow Pitching Airfoil NACA12in inviscid fluid

Mach = 0.4

Navier–Stokes characteristic 
boundary conditions (NSCBC)

Laminar Vortex shedding Cylinder

Mach = 0.15     Reynolds = 100

Khalighi Y, Mani A, Ham F, Moin P. Prediction of sound generated by 
complex flows at low Mach numbers. AIAA journal. 2010 Feb;48(2):306-16.

M24 SmartAnswer, Mid-Term Workshop, Leuven, 20th February 2019
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Find the minimum of f(x).

But, analytic expressions are not known in the computational world !!

To optimize an Objective Function with respect to a Design Variable we need the gradient.

Efficiency of GBMs depends on the method used to compute objective function (J) gradients.

Finite Difference method:

1 1( ,....., ,...., ) ( ,....., ,...., )( )

2

n nN N

n

J b b J b b bJ b

b

b 












2  RUN!!!N

Adjoint Method

M24 SmartAnswer, Mid-Term Workshop, Leuven, 20th February 2019
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Adjoint methods can tell you from a single run how you should change a geometry to improve it, 
independent from the number of design variables.

Continuous adjoint formulation:  

Field adjoint equations, their boundary conditions and the final expression of the gradients (sensitivity 

derivative) are derived by differentiating the augmented function

Adjoint solves backward in time (saving result in unsteady problems).

 d         (.....) +(.....) d
AugDifferentiation

aug

n n

J
J J R

b

u

b





 

 
      





 
 

Adjoint equation Adjoint B.C & Sensitivities

Continuous adjoint Formulation:

Primal equation     : ( , ) 0

Objective function : J( , )

R u b

u b



M24 SmartAnswer, Mid-Term Workshop, Leuven, 20th February 2019



Adjoint methods are Widely used in aerodynamic shape optimization.

relatively new in the field of aeroacoustic optimization .

Discrete Adjoint using Algorithmic Differentiation

Rumpfkeil et al (2010 ). URANS/FW-H -(blunt trailing edge in turbulent flow).

Zhou et al (2015 - now). URANS/FW-H-(nviscid pitching airfoil, laminar and turbulent vortex shedding cylinder, rod airfoil, jet 

flap interaction noise).

Zhou et al (2019). RANS-SNG(Direct method, broadband noise minimization).

Continuous Adjoint

Economon et al (2012 ). FW-H formulation in the wave equation form, solved using a FEM. Needs cumbersome 

derivations of new adjoint boundary conditions at the interface between the CFD and CAA. (inviscid pitching airfoil)

NTUA (2015 ). Steady flow model was used and a turbulence-based surrogate objective functions-(side mirror).

Kapellos. Incompressible flow models and the Kirchhoff integral.
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Initial Final 

RAE airfoil, Drag minimization

Adjoint method for aeroacoustic:
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Lift Optimization

Optimization results

•Mach = 0.6

•Amplitude = 2.44 degrees

•Mean angle of attack = 0

•Period = 0.114

•40 time steps per period

•2D

•Unstructured

•51000 nodes 

•202 nodes on airfoil

•201 nodes on far field
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Noise Optimization
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CFD Solver
Time series of source 
terms on FWH surface

Fourier 
transform

FWH solver
2

ˆ  df
frequency

J P  

Adjoint to FWH
(Sources terms)

Adjoint sources from FWH 
to CFD adjoint eqn

Sensitivities

Optimization results

17.5 %
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Optimization results

Noise Optimization

In-house software (EASY) – Evolutionary algorithm
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Validate the sensitivities for inviscid case.

Including constraints.

Run the code for the laminar vortex shedding cylinder.

Inclusion of turbulent cases.

Next Steps
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Overall conclusions

Low-Speed Cooling Fan 
Noise Modelling

ESR: Alessandro Zarri

Fan Proximity Liner 
Modelling

ESR: Sergi Palleja-Cabre

CFD-CAA analysis & 
optimization methods

ESR: Morteza Monfaredi

FEM Modelling of non-
locally reacting liners

ESR: Chaitanya Sanghavi

• A low-order prediction methodology has been applied to model the self-
noise emitted by a low-speed cooling fan. 

A generic, robust, easy to use tool for modeling liners in the initial design 
phase.

• OTR analytical liner models can yield a peak PWL insertion loss of ~4 dB, 
with a significant broadband IL over a wide range of frequencies. 

• A shape optimization frame-work for noise reduction based on the 
continuous adjoint method has been developed.
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Thank you for your 
attention


