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Motivation

Research Objective
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During the last decades, there have been tight regulations for noise

pollution highlighting the importance of an effective noise source

mitigation strategy. Numerical optimization methods should be employed

to design quieter and more efficient products. Adjoint-based

optimization methods, with a computational cost which is independent

of the number of design variables, are already in use in Aerodynamics

and should be extended in Aeroacoustics, too.

Fig. 2: Parameterization using Bezier curve (left) Good agreement between the adjoint 

and finite difference gradients (right). 
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• Development of a CAA tool, based on the Ffowcs Williams-

Hawkings (FW-H) analogy, coupled with the GPU-enabled

compressible CFD solver of PCOpt/NTUA;

• Development of the (continuous) adjoint to the coupled CFD-CAA

model;

• Validation of the proposed methods and the programmed software;

• Adaptation of the non-intrusive polynomial chaos approach for UQ in

CFD-CAA problems.

Fig. 3: Convergence of the objective function and geometry after reaching the minimum 

volume constraint (left). Reduction of fluctuations in the optimized geometry (right).

Methodology

Laminar vortex shedding cylinder (Mach=0.2, Re=1000)

Objective function is defined over 4 receiver locations at almost 21

diameters away from the cylinder.

A minimum volume constraint is considered for optimization.

Optimization Results

Fig. 4: Density contour (left). Adjoint density contour (right). 

Rod-airfoil benchmark (Mach=0.2, )

Receiver is located 1.85m on the top of the mid-chord of the airfoil.

No constraint is applied during the optimization.

Fig. 5: Convergence of the objective function (left). Comparison of the PSD  plot of the 

sound pressure between the baseline and optimized geometry (right).
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Acoustic pressure at receiver location is computed by the FW-H integral
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Continuous adjoint is developed for an objective function as the total

energy contained in the spectrum of the sound pressure. 'ˆ| ( ) |J p d
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Fig. 1: Work flow of the aeroacoustic shape optimization
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